Bluetooth 5.3 ready multi-protocol Module PTR9840 Embedded Cortex[™] M33F Dual-core processor Support Bluetooth Direct Finding AOA/AOD, Support Zigbee, Thread, MESH, ANT Ideal choice of IoT and Smart product

The PTR9840 ultra-low power Bluetooth 5 ready multiprotocol System on Module based on the nRF5340 from Nordic Semiconductor. The module can support Bluetooth 5.3 by upgrading the protocol stack. The module with an ARM® Cortex[™] M33F Dual-core processor, Bluetooth 5.1 Direct Finding AOA/AOD support, embedded 2.4GHz transceiver, provide a complete solution with no additional RF design, Bluetooth 5, ANT/ANT+, 802.15.4 and 2.4GHz proprietary multiprotocol support, allowing faster time to market, while simplifying designs, reducing BOM costs, also reduce the burden of Regulatory approvals to enter the world market. Making you more quickly into the Bluetooth smart application and remove the worries.

Features

- ◆ Nordic nRF5340 with ARM Cortex M33F Dual-core processor
- Multiprotocol support :Bluetooth 5, Bluetooth Mesh , ANT/ANT+, 2.4GHz proprietary, 802.15.4, Thread and Zigbee
- ◆ Bluetooth 5.0: 2/1Mbps, 500 kbps, 125 kbps
- ◆ IEEE 802.15.4-2006: 250 kbps
- Proprietary 2.4 GHz: 2 Mbps, 1 Mbps
- Bluetooth 5.1 Direction Finding AOA/AOD
- Integrated DC-DC converter
- ◆ Serial Wire Debug (SWD)
- ◆ Nordic SoftDevice Ready
- Over-the-Air (OTA) firmware update
- ◆ 46 General purpose I/O pins
- ◆ 15 level low-power comparator with wake-up from System OFF mode
- PCB antenna
- Size:24.3x17.5 x1.8mm
- No external components required
- Operation voltage: 1.7V to 5.5V

Application processer

- Flash/RAM: 1024KB/512KB.
- Arm TrustZone CryptoCell-312 security subsystem
- ♦ QSPI 32 MHz interface
- ♦ High-speed 32 MHz SPI
- NFC-A tag interface for OOB pairing
- ♦ 3 SPI Master/ SPI Slave
- Two 2-wire Master/Slave (I2C compatible)
- 2 UART (with CTS/RTS and DMA)
- ♦ I2S audio interface
- 3x 4-channel PWM unit with EasyDMA
- 12 bit/200KSPS ADC
- 3×32 bits timers,
- 2 x 24 bits Real Time Counters (RTC)
- Distributed Programmable Peripheral Interconnect (DPPI)
- Quadrature Demodulator (QDEC)

Network processer

- Flash/RAM: 256KB/64KB
- ◆ 128-bit AES HW encryption
- ◆ TX power: +3dBm to-20dBm
- ♦ 1 SPI Master/ SPI Slave
- 2-wire Master/Slave (I2C compatible)
- 1 UART (with CTS/RTS and DMA)
- 3×32 bits timers,

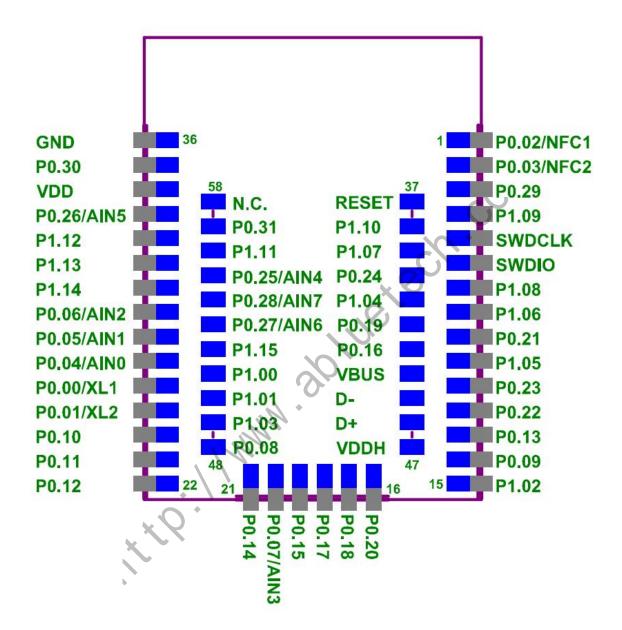
tech.

io lue

- 2 x Real Time Counters (RTC)
- USB 2.0 full speed (12 Mbps) controller

Typical Applications:

- 2.4 GHz Bluetooth low energy systems
- Proprietary 2.4 GHz systems
- Sports and leisure equipment
- Mobile phone accessories, Connected Appliances
- Health Care and Medical
- Consumer Electronics, Game pads
- Human Interface Devices, Remote control
- Building environment control / monitoring
- RFID, Security Applications, Low-Power Sensors
- Bluetooth Low Energy GateWay
- iBeaconsTM, EddystoneTM, Indoor navigation
- Lighting Products
- Fitness devices, Wearables


Quick Specifications:

Multi-protocol				
Version	Bluetooth 5 and Higher/ANT/2.4G	Hz Proprietary/802.15.4/Zigbee		
Security	Arm TrustZone CryptoCell-312	Arm TrustZone CryptoCell-312		
Radio				
Frequency	2.360GHz to 2.500GHz			
Modulations	GFSK at 2/1 Mbps, Long range 12:	5/500kbps, 802.15.4- 250 kbps		
Transmit power	+3dBm to -20dBm			
Receiver sensitivity	-97.5dBm@BLE 1M			
Antenna	Integrated PCB Antenna / Ext. IPX	Antenna		
Current Consumption				
TX only @ 0 dBm @ 3	V, DC/DC enabled	3.2 mA		
RX only @ 1 Mbps @ 3	3V, DC/DC enabled	2.6 mA		
Application CPU @ 64	MHz from flash @ 3V	3.4 mA		
Network CPU @ 64MH	Iz from flash @ 3V	2.5 mA		
System On, wake on any	y event	1.5 μΑ		
System Off, wake on res	set	1.1µA		
Operating conditions				
Power supply		1.7~5.5V		
Operating temperature		-25~+85 °C		
Block diagram.	30			
Block diagram:				

Block diagram:

Power and clock	Applicatio	n Proce	essor		Network F	Processor	
Power supply	64/128 MHz	64/128 MHz 1024 KB Flash			64 MHz Arm [®] Cortex®-M33	256 KB Flash	
LDO	Cortex®-M33,	512 KB F	RAM			Conexm55	64 KB RAM
Buck DC/DC	DSP, FPU, TrustZone	8 KB I-C	ache	IPC	IPC		2 KB I-Cache
POR BOR	AHB ,	AHB / APB / EasyDMA / DPPI				/ APB / EasyDMA	/ DPPI
Oscillators	System Peripher	System Peripherals			System Peripherals		
32 MHz RC/XO	3×TIMER	2×RTC	2×WDT	6×EGU	3×TIMER 2×I	RTC WDT EGU	RNG TEMP
32 kHz RC/XO	Security				ЕСВ	AAR	ССМ
Audio PLL	Arm CryptoCel	1-312	SPU	KMU	Digital I/F and	GPIO	
Debug	Digital, analog	I/F and GP	10			UART/SPI/TWI	
Debug	USB QSPI	HS-SPI	2×SPI/TWI	2×UART	GPIOTE	Shared 48-pir	crossbar
	125	PDM	3×PWM	QDEC			
	NFC-A Tag	SAADC	LPCOMP	COMP		Multiprotocol 2.4 GHz radio	
	GPIOTE	Shared	48-pin cross	bar			

Pin Description of Module (Top View) :

Pin	Name	Description	Recommend usage
Pin1	P0.02/NFC1	Digital I/O/ NFC input	NFC antenna connection
Pin2	P0.03/NFC2	Digital I/O/ NFC input	NFC antenna connection
Pin3	P0.29	Digital I/O	
Pin4	P1.09	Digital I/O	
Pin5	SWDCLK	HW debug and programming	
Pin6	SWDIO	HW debug and programming	
Pin7	P1.08	Digital I/O	

Pin8	P1.06	Digital I/O	
Pin9	P0.21	Digital I/O	
Pin10	P1.05	Digital I/O	
Pin11	P0.23	Digital I/O	
Pin12	P0.22	Digital I/O	
Pin13	P0.13	Digital I/O	Quad SPI
Pin14	P0.09	Digital I/O	High-speed SPI
Pin15	P1.02	Digital I/O	High-speed pin for 1 Mbps TWI
Pin16	P0.20	Digital I/O	
Pin17	P0.18	Digital I/O	Quad SPI
Pin18	P0.17	Digital I/O	Quad SPI
Pin19	P0.15	Digital I/O	Quad SPI
Pin20	P0.07/AIN3	Digital I/O/Analog input 3	
Pin21	P0.14	Digital I/O	Quad SPI
Pin22	P0.12	Digital I/O	High-speed SPI
Pin23	P0.11	Digital I/O	High-speed SPI
Pin24	P0.10	Digital I/O	High-speed SPI
Pin25	P0.01/XL2	for 32.768KHz use	01
Pin26	P0.00/XL1	for 32.768KHz use	
Pin27	P0.04/AIN0	Digital I/O/Analog input 0	
Pin28	P0.05/AIN1	Digital I/O/Analog input 1	
Pin29	P0.06/AIN2	Digital I/O/Analog input 2	
Pin30	P1.14	Digital I/O	
Pin31	P1.13	Digital I/O	
Pin32	P1.12	Digital I/O	
Pin33	P0.26/AIN5	Digital I/O/Analog input 5	
Pin34	VDD	Power Supply	
Pin35	P0.30 •	Digital I/O	
Pin36	GND	Ground	
Pin37	RESET	RESET	
Pin38	P1.10	Digital I/O	
Pin39	P1.07	Digital I/O	
Pin40	P0.24	Digital I/O	
Pin41	P1.04	Digital I/O	
Pin42	P0.19	Digital I/O	
Pin43	P0.16	Digital I/O	Quad SPI
Pin44	VBUS	USB Power	5 V input for USB 3.3 V regulator
Pin45	D-	USB D-	USB
Pin46	D+	USB D+	USB
Pin47	VDDH	High voltage power supply	
Pin48	P0.08	Digital I/O	High-speed SPI
Pin49	P1.03	Digital I/O	High-speed pin for 1 Mbps TWI
		Digital I/O	
Pin50	P1.01	Digital I/O	

Pin52	P1.15	Digital I/O	
Pin53	P0.27/AIN6	Digital I/O/Analog input 6	
Pin54	P0.28/AIN7	Digital I/O/Analog input 7	
Pin55	P0.25/AIN4	Digital I/O/Analog input 4	
Pin56	P1.11	Digital I/O	
Pin57	P0.31	Digital I/O	
Pin58	N.C.	NC	

*External 32.768 kHz RC oscillator is used to provide low frequency clock by default.

Note: An internal 4.7μ F bulk capacitor has been included on the module. For those application that with heavy GPIO usage and/or current draw, it is good design practice to add additional bulk capacitance as required for your application.

General Purpose I/O:

Each GPIO can be accessed individually with the following user configurable features:

- Input/output direction
- Output drive strength
- > Internal pull-up and pull-down resistors
- ➢ Wake-up from high or low level triggers on all pins
- > Trigger interrupt on all pins
- All pins can be used by the PPI task/event system; the maximum number of pins that can be interfaced through the PPI at the same time is limited by the number of GPIOTE channels
- > All pins can be individually configured to carry serial interface or quadrature demodulator signals

Hardware RESET:

There is on-chip power-on reset circuitry, But can still be used in external reset mode, in this case, RESET pin as an external hardware reset pin. The RESET pin pull up in the internal.

HW debug and flash programming of Module :

The Module support the two pin Serial Wire Debug (SWD) interface and offers flexible and powerful mechanism for non-intrusive debugging of program code. Breakpoints, single stepping, and instruction trace capture of code execution flow are part of this support.

Pin	Flash Program interface
SWDIO	Debug and flash programming I/O
SWDCLK	Debug and flash programming I/O

This is the hardware debug and flash programming of module, J-Link Lite support, please refer www.segger.com.

Power and Configuration:

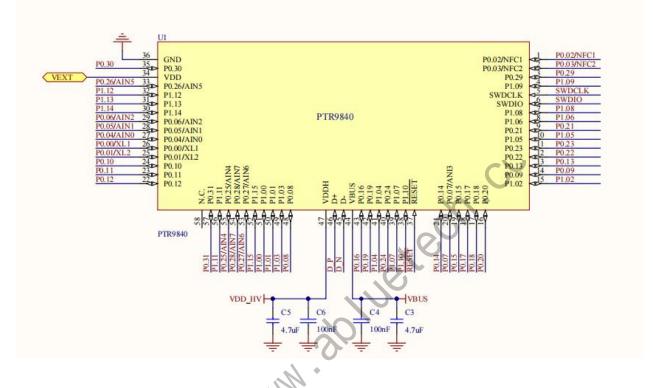
The module has two internal regulator stages.

Normal voltage mode uses the main regulator (VREGMAIN) and the radio regulator (VREGRADIO). The VREGMAIN and VREGRADIO regulators operate in LDO mode by default. DC/DC mode can be enabled independently for each regulator using VREGMAIN.DCDCEN and VREGRADIO.DCDCEN respectively.

High voltage mode uses the main regulator (VREGMAIN), the high voltage regulator (VREGH), and the radio regulator (VREGRADIO).All regulators operate in LDO mode by default. DC/DC mode can be enabled independently for each regulator using VREGMAIN.DCDCEN, VREGH.DCDCEN and VREGRADIO.DCDCEN.

Here all regulators are in DC/DC mode by default. An external LC filter is required for each of the regulators in DC/DC mode. If a regulator is only to be used in LDO mode, the inductor for this regulator is not needed.

		0	
Mode	Pin of Module	Name	Power Connection
Namal/Law Valtace (LV)	Pin 34	VDD	1.7V to 3.6V source in
Normal/Low Voltage (LV)	Pin 47	VDDH	Same source as VDD
High Valtage (HV)	Pin 34	VDD	1.8V to 3.3V supply out
High Voltage (HV)	Pin 47	VDDH	2.5V to 5.5V source in

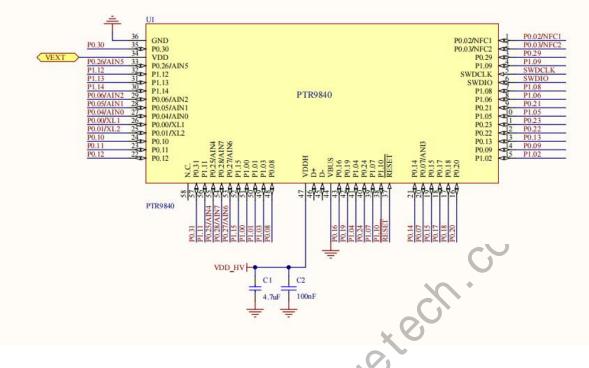

Important: In both LV and HV modes, the GPIO logic level voltage is determined by the VDD pin. In HV mode, all external devices that are connected to the Module's GPIO must either be powered by the module (from VDD) or use level translation.

USB Power: The USB interface on the Module can be used when the module is in either Normal /Low Voltage (LV) or High Voltage (HV) mode. The Module USB PHY is powered by a dedicated, internal LDO regulator that is fed by the VBUS pin (Pin43). This means that applying power to only the VBUS pin will not power the rest of the module. In order for the USB PHY to operate, VBUS must be externally powered.

Reference circuitry:

In this section there are 1 reference circuits to show how to design an application circuit with this module.

Reference Circuit configuration 1

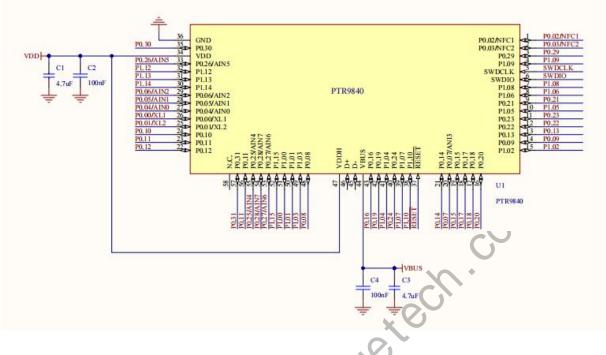

Configurations summary for reference circuit 1

	Configno	Main Suppl	EVT Supply Output	USB	
	Config no.	VDDH	VDD	EXT Supply Output	USB
	Config.1	Battery/Ext.regulator	N/A	Yes	Yes
1	-				

Explanation of symbols in reference circuit 1 schematic

Symbol	Parameter	Min.	Тур.	Max.	Units
V _{DDH}	Main supply voltage in high voltage mode	2.5	3.7	5.5	V
V _{BUS}	Supply voltage on VBUS pin	4.35	5	5.5	V
V _{EXT}	Voltage output on VDD when supplied from internal regulator (VREGH). VDDH is the input to VREGH.	1.8		3.3	V

Reference Circuit configuration 2


Configurations summary for reference circuit 2

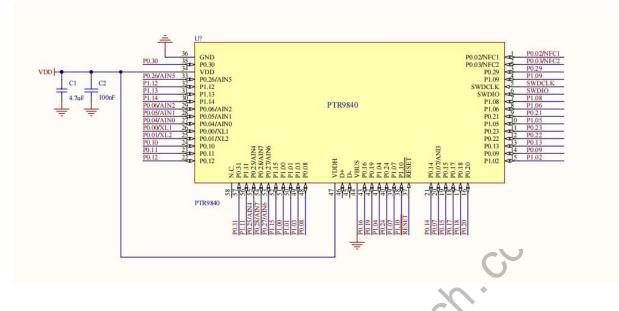
Config no.	Main Supply		EVT Sumply Output	USB
	VDDH	VDD	EXT Supply Output	USD
Config.2	Battery/Ext.regulator	N/A	Yes	No

Explanation of symbols in reference circuit 2 schematic

Symbol	Parameter	Min.	Тур.	Max.	Units
V _{DDH}	Main supply voltage in high voltage mode	2.5	3.7	5.5	V
V _{EXT}	Voltage output on VDD when supplied from internal regulator (VREGH). VDDH is the input to VREGH.	1.8		3.3	V

Reference Circuit configuration 3

Configurations summary for reference circuit 3


Configno	Main Su	oply	EVT Supply Output	USB
Config no.	VDDH	VDD	EXT Supply Output	USB
Config.3	N/A	Battery/Ext.regulator	No	Yes

Explanation of symbols in reference circuit 3 schematic

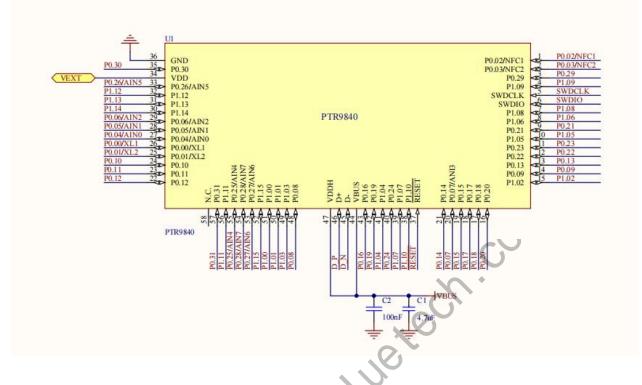
Symbol	Parameter	Min.	Тур.	Max.	Units
V _{DD}	Main supply voltage in normal voltage mode	1.7	3	3.6	V
V _{BUS}	Supply voltage on VBUS pin	4.35	5	5.5	V

XXX

Reference Circuit configuration 4

Configurations summary for reference circuit 4

Configno	Main Su	ipply	EVT Supply Output	USB
Config no.	VDDH	VDD	EXT Supply Output	USD
Config.4	N/A	Battery/Ext.regulator	No	No


Explanation of symbols in reference circuit 4 schematic

Symbol	Parameter	Min.	Тур.	Max.	Units
V_{DD}	Main supply voltage in normal voltage mode	1.7	3	3.6	V

to, interest of the second sec

Reference Circuit configuration 5

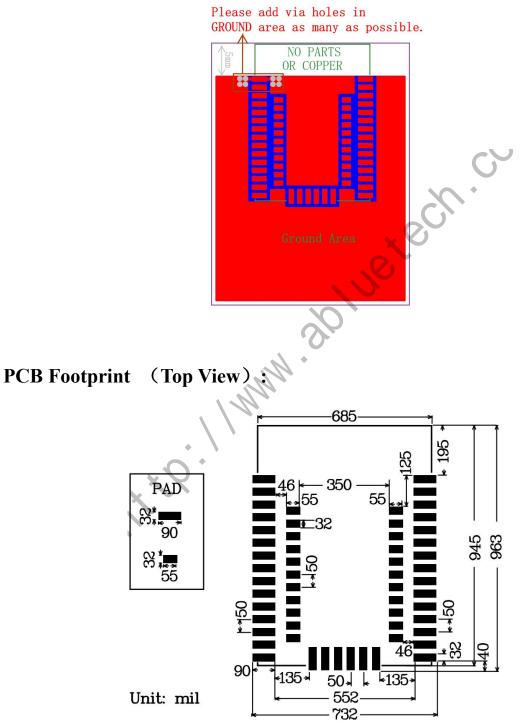
ь

Configurations summary for reference circuit 5

Configno	Main Supply	No.	EVT Supply Output	USB
Config no.	VDDH	VDD	EXT Supply Output	USD
Config.5	USB(VDDH = VBUS)	N/A	Yes	Yes

Explanation of symbols in reference circuit 5 schematic

Symbol	Parameter	Min.	Тур.	Max.	Units
V _{BUS}	Supply voltage on VBUS pin	4.35	5	5.5	V
V _{EXT}	Voltage output on VDD when supplied from internal regulator (VREGH). VBUS is the input to VREGH.	1.8		3.3	V


Some general guidance is summarized here:

- Main supply voltage is connected to VDD/VDDH. The system will enter one of two supply voltage modes, normal or high voltage mode, depending on how the supply voltage is connected to these pins. Normal voltage mode is entered when the supply voltage is connected to both the VDD and VDDH pins (so that VDD equals VDDH). High voltage mode is entered when the supply voltage is only connected to the VDDH pin and the VDD pin is not connected to any voltage supply.
- By default, the LDO regulators in the chip are enabled and the DC/DC regulators stage is disabled. Register DCDCEN is used to enable the DC/DC regulator. External LC filters has been connected in the Module for DC/DC regulators being used.
- The GPIO high reference voltage always equals the level on the VDD pin. In normal voltage mode, the GPIO high level equals the voltage supplied to the VDD pin, and in high voltage mode it equals the level specified in the register VREGHVOUT, the default value is 1.8V.
- When the power is supplied to VDDH, the output from the VDD pin could be used to supply external circuitry. The feature must be configured in the EXTSUPPLY register. The output voltage range is 1.8~ 3.3V which be set by the VREGHVOUT register .It can be used to power external low-power devices, such as sensers. The maximum output current is 7mA (DC/DC mode), please refer to the register VREGH.
- When using the USB peripheral, 5V USB supply needs to be provided on the VBUS pin.

tte. 11. Marine 20

Recommended RF Layout & Ground Plane:

The module integrated antenna requires a suitable ground plane to radiate effectively. The area under and extending out from the antenna portion of the module should be kept clear of copper and other metal. The module should be placed at the edge of the PCB with the antenna edge facing out. Reducing the ground plane will reduce the effective radiated power. Please add as more as possible via holes on the mother board near the GND pin of module, this will be good for the RF performance of system board.

Radio Specifications:

Parameter	Min.	Тур.	Max.	Unit
Frequency Range	2402		2480	MHz
Maximum Output Power		+3		dBm
Rx Sensitivity Level, BLE1 Mbps		-97.5		dBm
Data Rate on air	125		2000	kbps
Operating Temperature Range	-40	25	85	°C

Radio current consumption (transmitter):

Parameter	Mir	ì.	Тур.	Max.	Unit
TX only current (DC/DC, 3 V) PRF = +3 dBm			5.1		mA
TX only current (DC/DC, 3 V) PRF = +0 dBm			3.4		mA
TX only current (DC/DC, 3 V) PRF = -4 dBm			2.7	5	mA
TX only current (DC/DC, 3 V) PRF = -8 dBm			2.2	*	mA
TX only current (DC/DC, 3 V) PRF = -20 dBm			1.7		mA
adio current consumption (Receiver):					
	- ÷			2.4	TT •/

Radio current consumption (Receiver):

Parameter	Min.	Тур.	Max.	Unit
RX only current (DC/DC, 3 V) 1 Mbps BLE	0	2.7		mA
RX only current (LDO, 3 V) 1 Mbps BLE		6.7		mA
RX only current (DC/DC, 3 V) 2 Mbps BLE		3.1		mA
RX only current (LDO, 3 V) 2 Mbps BLE		7.9		mA

Operating Conditions:

Parameter	Min.	Тур.	Max.	Unit
Supply voltages				
VDD	1.7	3.0	+3.6	V
VDDH	2.5	3.7	+5.5	V
VBUS	4.35	5	+5.5	V
Operating Temperature Range	-40	25	85	°C

Absolute Maximum Ratings:

Parameter	Min.	Max.	Unit
Supply voltages			
VDD	-0.3	+3.9	V
VDDH	-0.3	+5.8	V
VBUS	-0.3	+5.8	V
VSS	0	0	V
I/O pin voltage			
Voltage on GPIO pins (VDD ≤ 3.6 V)	-0.3	VDD + 0.3	

Voltage on GPIO pins (V DD> 3.6V)	-0.3	+3.9	
RF input level		10	dBm
Environmental			
ESD Human Body Model		2	kV
ESD Charged Device Model		500	V
Storage temperature	-40	125	°C
Flash memory Endurance		10000	Write/erase cycles

Note: Exceeding one or more of the limiting values may cause permanent damage to the module.

Notes and Cautions:

Design Notes

(1) It is critical to following the recommendations of this document to ensure the module meets the specifications.

(2) Power supply must be free of AC ripple voltage. If such noise is present, it is critical to provide proper filtering and decoupling.

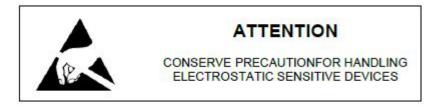
(3) The module should not be stressed mechanically after installation.

(4) Exposing the module to significant temperatures will result in degradation and decreased lifetime.

(5) Keep module away from other high frequency devices which may interfere with operation such as other transmitters and devices generating high frequencies.

(6) Avoid static electricity, ESD and high voltage as these may damage the module.

Handling and Storage


(1) Keep module away from other high frequency devices which may interfere with operation such as other transmitters and devices generating high frequencies.

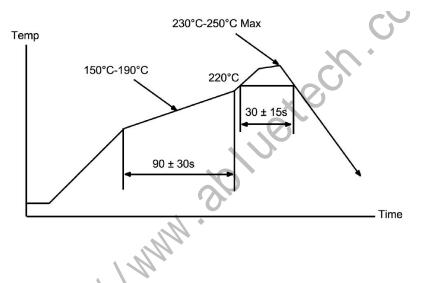
(2) Do not expose the module to the following conditions: Corrosive gasses such as Cl2, H2S, NH3, SO2, or NOX Extreme humidity or salty air Prolonged exposure to direct Sunlight Temperatures beyond those specified for storage.

(3) Do not apply mechanical stress.

(4) Do not drop or shock the module.

(5) Avoid static electricity, ESD and high voltage as these may damage the module.

Moisture Sensitivity


All plastic packages absorb moisture. During typical solder reflow operations when SMDs are mounted onto a PCB, the entire PCB and device population are exposed to a rapid change in ambient

temperature. Any absorbed moisture is quickly turned into superheated steam. This sudden change in vapor pressure can cause the package to swell. If the pressure exerted exceeds the flexural strength of the plastic mold compound, then it is possible to crack the package. Even if the package does not crack, interfacial delamination can occur.

Since the device package is sensitive to moisture absorption, it is recommended to bake the product before assembly.

Solder Reflow Temperature-Time Profile

Life Support Applications

Products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Customers using or selling these products for use in such applications do so at their own risk.

Additional Customization

We provide extensive customization, design and manufacturing services to ensure the perfect fit for your product. Our wide selection of modules allows developers to create any number of products. Should you need more information and assistance in integrating this module or developing your product, please contact us.

- Custom Hardware design including Modules, RF and Antenna Design
- Bluetooth Low Energy and Firmware Development
- Mobile Apps for iOS and Android
- Cloud Platform

Trademarks

The Bluetooth® word mark and logos are registered trademarks owned by Bluetooth SIG, Inc., Other trademarks and tradenames are those of their respective owners."

Right and Statements

- Reserves the right to make corrections, modifications, and/or improvements to the product and/or its \geq specifications at any time without notice.
- \geq Assumes no liability for the user's product and/or applications.
- We have a strict and careful check and collation, but can not guarantee this manual without any errors \geq and omissions.
- The contents of this manual by copyright protection laws and regulations, without our prior written \triangleright authorization of any person shall, in any way to copy the copy or manual, this manual will all or any part of any form in any cable or wireless network transmission, or be compiled and translated into any other format, text or code.

Ordering Information:

Part Number	Description
PTR9840	Bluetooth 5.2 System on Module, On board PCB antenna
PTR9840+	Bluetooth 5.2 System on Module, use with Ext. IPX Antenna
XANT-IPX-10	2.4GHz FPC Antenna with IPX connector, 2dB gain
XANT-SMA-10	2.4GHz Omni Antenna with SMA connector, 3dB gain
XIPX-SMA-10	IPX to SMA Converter RF cable, use for IPX type connector of RF module to SMA type Antenna.
MPTR9840-EVB	Evaluation boards for module, with key, LED, I/O extend